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Introduction

The /Mactamantibiotics1 ~ 5) represent the most important class of antibacterial agents at the present
time. However,owing to their widespread use an ever increasing numberof resistant bacterial strains are
developing due to mutation and /Mactamase gene transfer.6) To overcome this inactivation by /Mactamases

one possibility is to modify the /Mactam ring, the target of these enzymes. Replacement of the /Mactam
ring with other four-membered systems, e.g. cyclobutanone,7^ 1 ^ /?-sultam12) and others13 ~ 16) lead to little
success. Attention was turned to five-membered

systems, which are somewhat activated towards

penicillin-binding proteins (PBPs),17) the targets of
/Mactam antibiotics. Herein we report the chemistry
and biology of y-lactam analogues (y-lactam,

pyrazolidinone and isoxazolidinone (lactivicin)
derivatives) represented by the general structure
(Fig. 1).

Fig. 1. General structure of y-lactams reviewed in this
article.

Related molecules, e.g. urethanes18~20) and others21 ~27) are not discussed.

y-Lactams

Although y-lactam analogues of penicillins had been prepared earlier28~30) it was not until the early
1980s that the search for biologically active y-lactam analogues of the /Mactam antibiotics began in earnest.
In initial reports31>32) we considered the possibility that the presence of a /Mactam ring was not

mandatory for antibiotic activity but that a suitably activated amide bond was the major requirement.
Twobicyclic y-lactams (10 and ll), racemic analogues of carbapenicillanic acid (12),33) were synthesised
however they exhibited no antibacterial activity when tested against Bacillus subtilis ATCC6633 and
Escherichia coli supersensitive strain No. 21/30 or /Mactamase inhibition against Bacillus cereus /Mactamase
II and Klebsiella aerogenes BRL1003.

The two epimers were prepared via the nitrone (1) (Scheme 1). Reaction of 1 with methyl acrylate
provided an inseparable mixture of2 and 3 which was reduced to the amino alcohols (4 and 5). Cyclisation
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in refluxing methanol afforded the separable alcohols (6 and 7) which were modified via standard functional
group chemistry to the carbapenam analogues (10 and ll).
Our work continued with the synthesis and biological evaluation of fused y-lactam azetidines34-35)
since molecular modelling studies of these molecules showedsimilar pyramidal distortions of the lactam
nitrogen atom to those observed in penicillins. The degree of pyramidal distortion of the lactam nitrogen
in /Mactam antibiotics has been associated with antibacterial activity.36)

Bromination of glutaric anhydride (13) and transformation to the diester (16) was followed by

cyclisation with benzylamine to give the diastereomeric azetidines (17) (Scheme 2). Sodium borohydride
reduction provided the alcohols (18) separable by fractional crystallisation. After nitrogen deprotection
and acylation the alcohols (19) were converted to the acids (20) via a Wittig reaction and

two-stage hydrogenation. Intramolecular cyclisation gave the bicyclic y-lactams (21 and 22). Interestingly
substitution a to the y-lactam carbonyl of 22 via the lithium enolate (23) occurred on the more hindered
concave face. Finally elaboration to an acylamino side chain and deprotection provided (24).
y-Lactam (24) as well as deprotected 21 and 22 showed no significant antibacterial activity against a

panel of Gram-positive and Gram-negative organisms including strains highly sensitive to penicillins. They
also showed no /Mactamase inhibitory activity against /Mactamase I (B. cereus). However a related

compound,the azete (25),37) was reported in a patent to possess antibacterial activity against a wide variety
of pathogens (Fig. 2).
The first clear evidence that y-lactam analogues of /Mactamswere active as antibiotics was provided

in 1986 by our group and the Eli Lilly research group with the synthesis of 2638'39) and 2740) (Fig. 3).
In our case the prior preparation of the bicyclic y-lactams (ll and 24) and the discovery that neither
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Fig. 2. Azete (25) possessing antibacterial activity. Fig. 3. First y-lactam analogues possessing activity.

possessed antibacterial activity suggested to us that
y-lactam analogues ofpenems might show increased

reactivity and biological activity due to delocalisa-
tion of the lactam nitrogen lone pair through the
olefinic bond (Fig. 4).38'41'42)

Twosvnthetic routes to the intermediates (30

Fig. 4. Delocalisation of electron density in penems.

and 31) were reported. Condensation of the aldehyde (28) derived from L-aspartic acid with D-cysteine
methyl ester gave the thiazolidines (29) (Scheme 3). Subsequent cyclisation provided the three bicyclic

compounds 30~32.
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Alternatively the aspartic acid (33) was reacted with paraformaldehyde to yield the oxazolidinone
acid (34) (Scheme 4). Transformation to the aldehyde (35), condensation with L-cysteine methyl ester and
removal of the one-carbon nitrogen appendage gave 30 and 37.

Deprotection and reacylation of 30 yielded 38 (Scheme 5). Both were treated with benzoyl peroxide
and elimination of the resultant benzoates followed by hydrolysis of the methyl esters gave the desired 41
and42.
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The low yield of the final deprotection step

prompted a modified synthesis via a /?-nitrobenzyl
(PNB) protected carboxylic acid. Thus reaction of
the aldehyde (43) with D-cysteine gave the acid (44)
which was esterified to 45 (Scheme 6). Nitrogen
deprotection and subsequent acylation to give the

phenoxyacetyl (V) side chain was followed by

benzoate formation and elimination. Hvdroeeno-

Fig. 5. y-Lactam analogue (48) of a 3-unsubstituted
cephem (49).

lysis of the ester 47 gave the bicyclic y-lactam (42). This compoundwas found to show weak but real
biological activity against both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (E. coli
ESS).

Weare now synthesising the related molecules 48, y-lactam analogues of the cephalosporins (49), e.g.
ceftizoxime43) (Fig. 5).

The Eli Lilly work39'40'44) followed molecular modelling studies which showed that bicyclic y-lactams
possessing an acylamino side chain at C-7 rather than C-6 and in a /? orientation are conformationally
similar to /?-lactam antibiotics. They reasoned that the acylamino side chain wouldbe required in a y-lactam
antibiotic to promote activity diminished by the lower stain of the y-lactam ring relative to a /Mactam
ring. In addition it was thought that electron withdrawing functions at C-3 would increase the reactivity
of the lactam by delocalisation of the nitrogen lone pair away from the carbonyl group (Fig. 6).

However firstly they synthesised the C-7 unsubstituted y-lactam (56) for direct comparison with the
potent /Mactam antibiotics (57) (Scheme 7).45'46)

Solvolysis of the pyrrolidinone (50) in thiolacetic acid and subsequent condensation with

/>-nitrobenzylglyoxylate provided the hemiaminals (52) which were transformed to the desired racemic
product (56) via Woodward's procedure.47) This compound was devoid of antimicrobial or /Mactamase
inhibition activity.

Similar molecules substituted at C-7 with an acylamino side chain were also prepared (Scheme 8).
Thus high pressure reduction of the pyrazoline (58) provided the monocyclic y-lactams (59) followed by
elaboration to the bicyclic derivatives (63~68) as in Scheme 7. Protecting group removal and acylation
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Fig. 6. Delocalisation of electron density in carbapenems stabilised by an electron withdrawing group (X)

gave the desired products (69~74). Of these the epimeric 69 (MIC: 64 and 128 ^g/ml against Streptococcus
pyogenes C 203 and Streptococcus pneumoniae PARK) and 72 (MIC: 4.0 and 8.0/xg/ml against the same
organisms) showed moderate antimicrobial activity.
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A different route was employed for derivatives unsubstituted at C-3 (Scheme 9). Condensation of the
protected allyl glycine (75) with cysteine followed by carboxylic acid deprotection gave the bicyclic y-lactams
(76). Unsaturation was introduced by treatment with benzoyl peroxide and elimination of the resultant
benzoates. Deprotection and TV-acylation yielded compounds 78.
A series of C-7 unsubstituted carbapenem analogues were prepared from an optically active pyrrolidone

carboxylic acid (79) (Scheme 10). Transformation to the bicyclic keto ester (81) was followed by conversion
to the vinyl chloride (82) and the corresponding nitrile (83). Displacement of chlorine with ethanethiol
gave the sulfide (84) which was subsequently oxidised to the sulfone (85). Deprotection of 82~85 with

zinc under acidic conditions and peracetic acid oxidation of the resulting sulfide provided the C-7

unsubstituted bicyclic y-lactams (86~90). However only the sulfoxide (89) showed trace antimicrobial

activity.

The C-7 acylamino y-lactam carbapenems were prepared by two different routes. For the thioethyl
analogues (93~ 95) the C-7 unsubstituted sulfide (88) was treated with base then /i-butylnitrile to give the
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oxime (91) (Scheme 1 1). Acylamino side chain modification and oxidation afforded the required derivatives
(93-95).

For the cyano and carbomethoxy analogues (103 and 104) the pyrrolidinone (96) was treated with
2,2-dimethoxypropane to give the acetonide (97) (Scheme 12). Introduction of the oxime function and
conversion to the protected amine (96) was followed by a three step sequence to the iodo derivative (100).
Cyclisation with a vinyl sulfone gave the bicyclic compounds 101 and 102. Deprotection and acylation
provided the desired analogues 103 and 104. Of these only 103 exhibited slight activity against E. coli
XI61 and £. coliX580.

Finally workers in the Takeda laboratories48) prepared y-lactam analogues of carbapenems with
cysteamine moieties at C-3 starting from L-aspartic acid as a source of chirality. The diprotected amino
acid (105) was transformed to the keto ester (106) followed by condensation with dimethoxybenzylamine
and subsequent cyclisation (Scheme 13).

After conversion to the acids (109 and 110) the cis isomer (110), separated by crystallisation, was
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transformed to derivatives (111 and 112). The keto esters (113, 114 and 115) were prepared then cyclisation
gave the bicyclic y-lactams (116, 119 and 122). Exchange of the C-7 acylamino side chains and oxidation
of one product to its sulfone provided five carbapenem analogues (117, 118, 120, 121 and 123) for biological
evaluation. All showed slight but appreciable in vitro antibacterial activity against the Gram-negative
organisms tested. Of particular interest was the sulfone (121) (MIC: 50 and 100 /ig/ml against E. coli PG-85
and Proteus mirabilis ATCC21 100, respectively) which was more potent than the sulfide (120) (MIC: 100
and > lOOjUg/ml against the same organisms) possibly due to activation of the C-N bond by the electron
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Fig. 7. Oxapenams (124). Fig. 8. Oxapenems (132). Fig. 9. Oxamazins (133).

withdrawing sulfonyl group. Also the trans isomer (123) (MIC: 25, 6.25 and 25 ^g/ml against E. coli PG-12,
P. mirabilis ATCC21100 and Klebsiella pneumoniae IFO 3317) was found to be more active than the cis
(117) (MIC: 100, 25, and 100//g/ml against the same organisms) contrasting with known results for other
antibiotics and their epimers.

Although the major emphasis in this area has been analogues of the penems and carbapenems we
recently reported49) the synthesis of analogues of the oxapenams (124)50) (Fig. 7).

Thus the oxidative cleavage of dipeptide (125) afforded an equilibrium mixture of the aldehyde (126)
and the hydroxylactams (127) (Scheme 14). Treatment with acidified methanol gave the methoxy lactams
(128) separable by chromatography. Hydrogenolysis to the alcohols (129), cyclisation and deprotection
provided the desired analogues (130 and 131). Both were shown to be inactive when tested for antibiotic
activity against S. aureus NCTC6571.

Work is currently in progress in our laboratories to prepare the unsaturated derivatives (132) which
are expected to have increased reactivity (Fig. 8).

Attention has been focussed on the preparation of bicyclic y-lactams however Crossley et al.51) has
showninterest in monocyclicy-lactams as antibiotics with the synthesis of analogues of the oxamazins
(133).52)

Cyclisation of the 0-alkyl hydroxamates (135), prepared from the protected* y-nitro a-amino acid
(134), gave the y-lactams (136) (Scheme 15). Nitrogen protection was modified by hydrogenolysis and
reacylation. Ethyl ester deprotection and HPLCseparation of diastereoisomers provided compounds
139~ 144 however none showed significant antibacterial activity against a range of Gram-positive and
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Gram-negative bacteria.
Bicyclic Pyrazolidinones

As part of the continued search for biologically
active y-lactam analogues of the /Mactam antibiotics
workers from the Lilly Research laboratories in-
vestigated the pyrazolidinone ring as a reactive

Fig. 10. Aza-/Mactams.

y-lactam. Since aza-/Mactams (145)15) (Fig. 10) are highly reactive and attempts to prepare appropriate
bicyclic compounds 14616) failed they reasoned that aza-y-lactam analogues might possess a mixture of
chemical stability and acylating ability suitable for antimicrobial activity.

The initial chemistry involved the preparation of the bicyclic pyrazolidinone (151) containing the
gem-dimethyl moiety in the B ring (Scheme 16).53) It was envisaged that the 1,3-dipolar cycloaddition of
a substituted acetylene to a pyrazolidinium ylide would provide the desired [3.3.0] fused bicycle. Thus
treatment of the pyrazolidinone (148), readily prepared from diprotected D,L-serine, with 2,2-

dimethoxypropane and catalytic acid yielded the dimethyl ylide (149).
Cycloaddition with diallyl acetylene dicarboxylate gave the bicyclic pyrazolidinone (150) in respectable

yield. Removal of the BOCprotecting group, acylation then deprotection gave the pyrazolidinone (151)
containing an appropriate amide side chain. This compoundwas found to exhibit in vitro antimicrobial
activity against S. aureus.
In order to more closely mimic a typical /Mactam antibiotic a bicyclic unit without the gem-dimethyl

unit was preferred.54~57) This was achieved by reaction of the monocyclic pyrazolidinone (148) with
aqueous formaldehyde providing the azomethine imine (152) which was heated with the acetylene diester
to give the C-4 unsubstituted bicyclic unit (153) (Scheme 17). Coupling of the amide side chain and

deprotection gave compound154 which showed enhanced in vitro antibacterial activity against a variety
of Gram-positive and Gram-negative strains relative to the gem-dimethyl analogue.

The electron withdrawing ability of the C-3 substituent (Fig. ll) affects the reactivity of the
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pyrazolidinone by providing a more effective
acylating agent which may result in increased
antibacterial activity. In view of this the scope of

the cycloaddition reaction was explored by trapping

the unsubstituted pyrazolidinium ylide (152) with a
variety of acetylenes (Scheme 18).
Howeverthis approach suffered from low yields

Fig. ll. Increased reactivity of a y-lactam towards

enzymatic hydrolysis by electron withdrawing groups
(X).

and a lack of regiocontrol. Both isomers (155 and 156) were generally obtained with the desired 155 often
the minor product.
A substantial improvement to this methodology was achieved by employing vinyl sulfones as acetylene

equivalents.58'59) Thus formation of the cycloadducts (157 and 158) followed by base catalysed elimination
of phenylsulfinic acid gave the desired bicyclic pyrazolidinones (155) with high regioselectivity (Scheme 19).
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More recently the bicyclic unit has been prepared via an intramolecular Wadsworth-Horner-Emmons
condensation.60~62) The three conditions of regioselectivity, variability of the C-3 substituent and

preservation of chirality at C-7 were satisfied. Conjugate addition of the chiral pyrazolidinone (159) to the
vinyl phosphonate provided the TV-alkylated product (160) (Scheme 20). Subsequent acylation of the amide
nitrogen and the addition of 2 equivalents of base instigated ring closure to the bicyclic compounds162.
Elaboration of the C-7 side chain gave bicyclic pyrazolidinones (163) suitable for biological evaluation.
Bicyclic pyrazolidinones (163), where X is electron withdrawing (relative to X = COOH),were indeed

found to possess greater antimicrobial activity than the diacid (154) (Table 1). A study of the activities of
the methyl ester (X = COOMe) and acetyl (X = COMe) derivatives63) showed both to have broad spectrum
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antibacterial activity however both were susceptible to inactivation by /Mactamases (only the acetyl
derivative was inactivated by Enterobacter cloacae 265A).
An investigation of the rates of hydrolysis of the bicyclic pyrazolidinones as a measure of their

acylating ability64) showed a correlation between the rate of reaction with hydroxide ion and antimicrobial
activity. The rates of y-lactam ring opening also correlate with the C-3 substituent constants (a). Thus the

cyano (X=CN)and methyl sulfone (X=SO2Me)analogues revealed greater potency as expected, the
latter exhibiting greater overall activity.

Investigations into structural changes of the

[3.3.0]bicyclic pyrazolidinone unit, other than

variation of the C-3 substituent, included replace-
ment of C-3 with sulfur, ring enlargement to the
[4.3.0]pyrazolidinones and modification of the C-7

side chain.

Reaction of the optically pure intermediate

pyrazolidinium ylide (164) with a thioaldehyde

equivalent gave the two diastereoisomers (165 and
166) (Scheme 21). These were transformed to the

target molecules (167 and 168) however neither

isomer exhibited antibacterial activity.6 5)

Table 1. Antibacterial activity of bicyclic pyrazolidin-
ones (163).

MIC Gig/ml)

Streptococcus Klebsiella Providencia
pyogenes pneumoniae rettgeri

C 203 X68 C24

SO2Me 0.25 0.25 0.06

CN 0.5 0.5 0.25

COMe 0.5 2 0.25

COOMe 4 8 1

CONHC6H5 1 32 8

COOH 8 64 8

2-Thiophene >128 >128 >128

C6H5 >128 >128 >128



VOL.44 NO. 1 THE JOURNAL OF ANTIBIOTICS 15

The [4.3.0]byclic pyrazolidinones (171) were seen to resemble the cephalosporin skeleton (172) (Fig.
12)66)

Thus compounds 176 were synthesised in the following manner (Scheme 22). Selective alkylation of
N-l of the monocyclic nucleus (148) provided the ester (173). Reduction to the alcohol and iodination via
the mesylate gave a suitable precursor (174) for cyclisation with an acetylene or acetylene equivalent. Thus
Michael addition of N-2 to the vinyl sulfoxides (177) followed by ring closure and elimination of
phenylsulfinic acid gave the desired bicyclic units (175). These were transformed to potential antibiotics
(176) however neither showed significant antibacterial activity.
The carbapenems PS-5 (178)67) and thienamycin (179)68) (Fig. 13) are potent antibiotics which do

not possess the typical C-7 acylamino side chain. The [3.3.0]bicyclic pyrazolidinones (183) with the same
alkyl or substituted alkyl side chains were prepared (Scheme 23).69)
The substituted acrylates (180) were condensed with hydrazine and the pyrazolidinium ylides (181)

formed via reaction with aqueous formaldehyde.

Reaction with an acetylene or acetylene equivalent
followed by deprotection yielded the bicyclic

compounds 183. Of these the cyano derivative was
the most potent but all exhibited significantly

reduced antibacterial activity relative to 163
(X = COMe).

Fig. 12. Bicyclic[4.3.0]pyrazolidinone analogue (171)

of cephalosporins (172).

Fig. 13. Carbapenem antibiotics PS-5 (178) and thienamycin (179).
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7-Unsubstituted pyrazolidinones (186)70) also were synthesised by cycloaddition chemistry (Fig. 14).
Someof these compoundsshowed moderate to good antibacterial activity. However, no /Mactamase

inhibitory properties were reported.

Lactivicins

Using hypersensitive screening methodology71} Takeda workers discovered lactivicin (LTV: 187)72'73)
as well as novel /Mactam antibiotics (e.g. sulfazecins,74) cephabacins7 5 ~ 78) and formadicins79>80)) of bacterial
origin. LTVwas isolated from culture filtrates of Empedobacter lactamgenus YK-258 and Lysobacter albus
YK-422. It has the structure [4/S]-2-(4-acetylamino-3-oxo-isoxazolidinyl)-5-oxo-tetrahydrofuran-2-

carboxylic acid,81'82) whereby an isoxazolidinone moiety and a y-lactam ring are connected by a single
C-N bond. LTV exists as an equilibrium mixture of two epimers in the ratio 53 :47 (A: B) (Fig. 15).

The structure contains a cycloserine nucleus,
the D-form of which is an antibacterial agent

(oxamycin and orientomycin)83'840 in itself and has
been used in the treatment of severe pulmonary
tuberculosis. LTV is a non-/Mactam antibiotic
having properties85) previously considered exclu-

sively characteristic of /Mactam antibiotics:

Fig. 14. 7-Unsubstituted[3.3.0]pyrazolidinones (186).

Fig. 15. Lactivicin equilibrium structures.
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1) It binds to the essential PBPs,86) the target proteins of /Mactams17) (the first non-/Mactam

having this affinity).

2) Is highly susceptible to various cephalosporinases and penicillinases.
3) Induces /Mactamase activity.

4) Showsmuchhigher activity against /Mactamase hypersensitive mutants ofE. coli and Pseudomonas
aeruginosa than against their parents.

5) Is active against anaerobic bacteria but not mycoplasma or fungi.
Moreover LTVhas weak inhibitory activity against a number of /Mactamases and at least two types

of activity against E. coli; one is that of /Mactam antibiotics (special inhibition of peptidoglycan synthesis)
and the other may be inhibition of SH-proteins involved in fundamental membrane functions.

The mode of action of LTVis very similar to that of /Mactam antibiotics and is believed to involve
irreversible acylation of the PBPsyielding an acylase enzymewith concomitant opening of the y-lactone
ring. The resultant oxime (188) may subsequently degrade further (Fig. 16).81>85'86)

Since LTV possesses only moderate antibacterial activity85) (Table 2) and in order to overcome its
relatively strong toxicity on parental administration72) structural modifications were necessary.

The initial work consisted of the development of a direct route to the LTV nucleus, 4-aminolactivicinic
acid (4-ALA: 191) (Scheme 24).72'87)

4-ALAwas also prepared by formal total synthesis.88) Selective esterification of 2-oxoglutaric acid
and reaction with the cycloserine (194) afforded the desired condensation product (195) (Scheme 25).

Fig. 16. Proposed mode of action oflactivicin.
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Table 2. Antibacterial activity of lactivicin derivatives (196).

In vitro MIC Gug/ml)

R S.a Ex. C.f. S.m. P. v.
FDA NIHJ j- IFO ^ IFO IFO

209P JC-2 1268 1 12648 3988

196A CH3 3.13 100 100 100 100 >100 100

H2N^Sx
196B N ll^ 12-5 L56 °-39 3-13 °-78 3-13 0.78

ROCH3

H2N^S

196C N-^C ^ 100 0.78 <0.1 0.78 0.39 0.78 0.39

NsOCH2CO O Na

H2N-<S>
196D N-^L ^ 6.25 0.39 0.2 0.78 0.39 1.56 0.39

N*OCH2CH3
196E PhCH2 0.2 6.25 3.13 12.5 3.13 50 100

196F PhOCH2 0.39 50 6.25 50 25 > 100 12.5

196G "^If^ >100 0.78 <0.1 0.78 0.2 0.39 <0.1

RO><COO Na

H2N^S
196H N-\/ 1.56 3.13 1.56 3.13 3.13 6.25 3.13

II

1961 ^S^CH2 0.39 6.25 3.13 12.5 6.25 >100 6.25

196J N >-SCH2 <0.1 12.5 3.13 100 12.5 >100 6.25

Cl

D-Cycloserine 12.5 25 - 50 - > 100 100

Abbreviations: S.a., Staphylococcus aureus; Ex., Escherichia coli; C.f., Citrobacter freundii; K.p., Klebsiella
pneumoniae; S.m.; Serratia marcescens; P.v., Proteus vulgaris.
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Hydrogenolysis gave the key intermediate (191) for preparing LTVderivatives.
With 4-ALA (191) in hand the chemistry developed for the modification of 6-aminopenicillanic acid
(6-APA), 7-aminocephalosporanic acid (7-ALA) and 3-aminomonobactamic acid (3-AMA) was applied
for the preparation of a range of LTVderivatives for biological evaluation (Scheme 26).72'88>89)
Table 2 contains MICvalues for the most active derivatives (for comparison MICdata for LTVand

D-cycloserine85) are also included).

Active esters of the highly in vitro active compounds 196B and 1961 were prepared for in vivo use and

were found to have improved protective effects after oral administration compared with their parents.89)
Since D-cycloserine itself is a cell-wall biosynthesis inhibitor we reasoned that the cycloserine nucleus
maybe the only structural requirement for antibacterial activity thus derivatives lacking the y-lactone

moiety were prepared.90)
In our laboratory we envisaged that cleavage of the y-lactam ring would result in elimination of the
leaving group (X) (Fig. 17) in a similar manner to that proposed for LTVitself.
Alkylation of the lithium salt of the cycloserine (197) with allyl chloro-2-ethoxyacetate afforded the

epimeric ethers (198) (Scheme 27). Palladium catalysed protecting group removal gave the diastereoisomers
(199) separable by HPLC.

Neither of the epimers (199) displayed antibacterial activity against E. coli X580 or S. aureus NCTC
6571.

In addition the preparation of an enamine (201) was carried out.90) Weconsidered that delocalisation
of the nitrogen lone pair might activate the y-lactam
towards nucleophilic attack by the enzyme.

Cycloserine (197) was treated with base followed by
an acetylene dicarboxylate then quenching with

acetic acid yielded a single diastereoisomer (un-
assigned) (200) (Scheme 28). Deprotection and

HPLCpurification provided the diammoniumsalt

Fig. 17. Increased reactivity of cycloserine derivatives
by electron withdrawing groups (X).
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(201) which showed only low activity against the above strains.
A y-lactam analogue of the monobactams also was prepared91} in our laboratories. Such an TV-sulfonyl

L-cycloserine derivative bearing a penicillin-type side chain might be activated towards acylation due to
the cumulative effects of the two electronegative substituents on the amide nitrogen.

Deprotection of cycloserine (197) followed by electrophilic sulfonation and ion exchange

chromatography gave compound203 which proved to be inactive against a number of organisms (Scheme
29).

Takeda workers prepared aza analogues of LTV,92) molecules related to the bicyclic pyrazolidinone
antibacterials (previous chapter). Conversion of protected serine (204) to the acrylic ester (205) was followed
by treatment with hydrazine hydrate then acetylation gave pyrazolidinone (207) (Scheme 30). Similarly
treatment of 205 with methylhydrazine gave 208. After addition of the lactone unit to give 209 and 210
deprotection and acylation provided the ^-substituted compounds 211 and 212. The unsubstituted 213
was produced via similar chemistry and exhibited weak activity against E. coli O 1 1 1 and S. pyogenes E-14
whereas 211 and 212 showed none.

Abbreviations

acac: Acetylacetonate, BSTFA: bis(trimethylsilyl)-trifiuoroacetimide, Bn: benzyl, BT: benzotriazole,

mCPBA:ra-chloroperoxybenzoic acid, CAN: eerie ammoniumnitrate, CDI: 1,l'-carbonyldiimidazole,
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DCC: 1,3-dicyclohexylcarbodiimide, DMB: 2,4-dimethoxybenzyl, DMS: dimethyl sulfide, DBU: 1,8-

diazabicyclo[5.4.0]undec-7-ene, DMA: N,AA-dimethyl acetamide, EEDQ: 2-ethoxy-l-ethoxycarbonyl- l ,2-
dihydroquinone, G: phenylacetyl, LDA: lithium diisopropylamide, Ms: mesyl, NMM: TV-methyl

morpholine, PNB: /7-nitrobenzyl, PNZ: ^-nitrobenzyloxycarbonyl, THP: tetrahydropyranyl, TMS:

trimethylsilyl, Ts: tosyl, V: phenoxyacetyl, Z: benzyloxycarbonyl.
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